If it's not what You are looking for type in the equation solver your own equation and let us solve it.
77x^2-533x+308=0
a = 77; b = -533; c = +308;
Δ = b2-4ac
Δ = -5332-4·77·308
Δ = 189225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{189225}=435$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-533)-435}{2*77}=\frac{98}{154} =7/11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-533)+435}{2*77}=\frac{968}{154} =6+2/7 $
| 5x/7=22, | | 10×^2-21x-10=0 | | 10+6j=4j | | 4(2x+5)=27 | | Y=3x+66 | | 112=7(s-45)+35 | | 3q-4+9q=-4+q | | 8x-5x=285 | | -2(1y+4)=0 | | 17x-x^2=18 | | 2b+5=4b-7 | | 15=4-3(3z-2) | | -0.04x^2+6x-200=0 | | 19=5y-16 | | 5y/2+y/6=36/3 | | 18x+19=14x-7 | | 3x-4=125 | | 6x+2=5-(7x-8) | | 6p^2-13p-15=0 | | 5j=-4+7j | | 3x=121 | | t/3+2-10=-3t+2 | | 3y-8=48 | | -4y-3(7y-7)=-9+8(8-y) | | 4(x+8)-4=-7(x-5) | | 5/3(3c-3)=1/5(20c+5) | | -2-r=8-2r | | 3x(x+8)=-16-2x | | v/4+9=37 | | X^2-17x=-18 | | -2r=8-2r | | -7+2=-5y |